Our Lab CHOCOLATE Lab

Co Pls

David Daniel Ruffus Fouhey Maturana von Woofles

<u>Computational</u> <u>Holistic</u> <u>Objective</u> <u>Cooperative</u> <u>Oriented</u> <u>Learning</u> <u>Artificial</u> <u>Technology</u> <u>Experts</u>

Plug: The Kardashian Kernel (SIGBOVIK 2012)

Plug: The Kardashian Kernel (SIGBOVIK 2012)

Predicted KIMYE March 2012, before anyone else

Plug: The Kardashian Kernel (SIGBOVIK 2012)

Also confirmed KIM is a reproducing kernel!!

Daniel Maturana, David Fouhey CHOCOLATE Lab – CMU RI

• Online framework: Only one pass over the data.

- Online framework: Only one pass over the data.
- Also online in that it works for #Instagram #Tumblr #Facebook #Twitter

- Online framework: Only one pass over the data.
- Minimum regret: Do as best as we could've possibly done in hindsight

- Online framework: Only one pass over the data.
- Minimum regret: Do as best as we could've possibly done in hindsight

Standard approach: Randomized Weighted Majority (RWM)

Algorithm 1 Randomized Weighted Majority

```
initialize regret R_t \leftarrow 0
initialize feature weights w_0 \leftarrow 0
t \leftarrow 1
for t = 1 to T do
   observe data x_t
   predict outcome y_t \leftarrow f(x_t, y_t, w_t)
   receive loss function \ell_t(y_t)
   decrease w_t for erroneous features
   update regret R_t \leftarrow R_{t-1} + \ell_t(y_t)/T
   t \leftarrow t + 1
end for
```

Standard approach: Randomized Weighted Majority (RWM)

Algorithm 1 Randomized Weighted Majority

initialize regret $R_t \leftarrow 0$ initialize feature weights $w_0 \leftarrow 0$ $t \leftarrow 1$ for t = 1 to T do observe data x_t predict outcome $y_t \leftarrow f(x_t, y_t, w_t)$ receive loss function $\ell_t(y_t)$ decrease w_t for erroneous features update regret $R_t \leftarrow R_{t-1} + \ell_t(y_t)/T$ $t \leftarrow t+1$ end for

Regret asymptotically tends to 0

Our approach: Stochastic Weighted Aggregation

Algorithm 2 Stochastically Weighted Aggregation

```
Initialize regr3tt R_t \leftarrow 0

t \leftarrow 1

for t = 1 to death do

s0mething happened x_t

post tumblr y_t \leftarrow f(x_t, y_t, \#so \ \#random)

likes/reblogs/retweets \ell_t(y_t)

chill

regret!1! R_t \leftarrow R_{t-1} + \ell_t(y_t)/T

t \leftarrow t+1

end for
```

Regret asymptotically tends to 0

Our approach: Stochastic Weighted Aggregation

Algorithm 3 Stochastically Weighted Aggregation

Initialize r3gret $R_t \leftarrow 0$ $t \leftarrow 1$ for t = 1 to death do s0mething happened x_t post tumblr $y_t \leftarrow f(x_t, y_t, \#so \ \#random)$ likes/reblogs/retweets $\ell_t(y_t)$ regret!1! $R_t \leftarrow R_{t-1} + \ell_t(y_t)/T$ chill update regret $R_t \leftarrow R_{t-1} + \ell_t(y_t) R_t \leftarrow 0$ yolo lol $t \leftarrow t+1$ end for

Regret is instantaneously 0!!!!

Generalization To Convex Learning

- Total Regret = 0
- For t = 1, ...
 - Take Action
 - Compute Loss
 - Take Subgradient
 - Convex Reproject
 - Total Regret += Regret

Vote? •

Generalization To Convex Learning

- Total Regret = 0
- For t = 1, ...
 - Take Action
 - Compute Loss
 - Take Subgradient
 - Convex Reproject
 - Total Regret += Regret

Vote? •

53,237 people like this.

SUBGRADIENT

AT

COMMEN

Like · Comment · Share

How to Apply? #enlightened

"Real World"

Subgradient = Subgradient Convex Proj. = Convex Proj.

Twitter

Get instant updates on #swag	Results for #swag			
Full name	Tweets Top / All			
Email	Alexander Haxton @AlexanderHaxton 29 Mar Excited for my birthday celebration today! Time to decide on suit			
Password	shirt, tie, pocket square, shoes. #bespoke #dapper #swag #fashion			
Sign up	ea gree Care Retweeted 2752 times Expand			
Tweets >	Tori Quesenberry @_tquizze15m What could a 4th grader possibly need Twitter for?			
>eople >	"Line leader today. So powerful. #swag " Expand			
Popular images & videos These results include media shared by people ou don't follow.	Mr Ninja @normatkid56 18m i dont have many followersbut it's make me happy #Swag because this twitter just for fun. haha			
Display media	Expand 🛧 Repty 11 Retweet 🛪 Favorite 🚥 More			
Who to follow - Petrash - View all Mariah Carey 🤣 @MariahCarey 🗴 Follow	Brooke Strickland @bdstrick24 4§m The hairstyle /m getting when we go to the Dominican ℓ []#swag pic twitter.com/FenDjSMc1f			

Subgradient = Retweet Convex Proj. = Reply

Facebook

Subgradient = Like Convex Proj. = Comment **Reddit**

Subgradient = Upvote Convex Proj. = Comment

Another approach #swag #QP

 Convex Programming – don't need quadratic programming techniques to solve SVM

Head-to-Head Comparison SWAG QP Solver vs. QP Solver

4 Loko Phusion et al. '05

LOQO Vanderbei et al. '99

A Bayesian Comparison

	Solves QPs	Refresh- ing	SWAG	# States Banned	% Alcohol	# LOKOs
4 LOKO	<u>NO</u>	<u>YES</u>	<u>YES</u>	<u>4</u>	<u>12</u>	<u>4</u>
LOQO	<u>YES</u>	<u>NO</u>	<u>NO</u>	<u>2</u>	<u>0</u>	<u>1</u>

A Bayesian Comparison

Le Me, A Bayesian

A Bayesian Comparison

Use ~Max-Ent Prior~ All categories equally important.

Winner!

Le Me, A Bayesian

~~thx lol~~

#SWAGSPACE

Before: Minimum Regret Online Learning **Now:** Cat Basis Purrsuit

Cat Basis Purrsuit

Daniel Caturana, David Furry CHOCOLATE Lab, CMU RI

Motivation

• Everybody loves cats

- Cats cats cats.
- Want to maximize recognition and adoration with minimal work.
- Meow

Previous work

• Google found cats on Youtube [Le et al. 2011]

- Lots of other work on cat detection[Fleuret and Geman 2006, Parkhi et al. 2012].
- Simulation of cat brain [Ananthanarayanan et al. 2009]

Our Problem

 Personalized cat subspace identification: write a person as a linear sum of cats

Why?

• People love cats. Obvious money maker.

Problem?

• Too many cats are lying around doing nothing.

• Want a spurrse basis (i.e., a sparse basis)

Solving for a Spurrse Basis

- Could use orthogonal matching pursuit
- Instead use metaheuristic

Solution – Cat Swarm Optimization

Cat Swarm Optimization

Shu-Chuan Chu¹, Pei-wei Tsai², and Jeng-Shyang Pan²

¹ Department of Information Management, Cheng Shiu University
² Department of Electronic Engineering, National Kaohsiung University of Applied Sciences

Abstract. In this paper, we present a new algorithm of swarm intelligence, namely, Cat Swarm Optimization (CSO). CSO is generated by observing the behaviors of cats, and composed of two sub-models, i.e., tracing mode and seeking mode, which model upon the behaviors of cats. Experimental results using six test functions demonstrate that CSO has much better performance than Particle Swarm Optimization (PSO).

Cat Swarm Optimization

Motivated by observations of cats

Seeking Mode (Sleeping and Looking)

Tracing Mode (Chasing Laser Pointers)

Cat Swarm Optimization

- Particle swarm optimization
 - First sprinkle particles in an n-Dimensional space

Cat Swarm Optimization

- Cat swarm optimization
 - First sprinkle cats in an n-Dimensional space*

*Check with your IRB first; trans-dimensional feline projection may be illegal or unethical.

Seeking Mode

• Sitting around looking at things

Seeking mode at a local minimum

Tracing Mode

• Chasing after things

In a region of convergence

Scurrying between minima

Results – Distinguished Leaders

More Results – Great Scientists

Cat NIPS 2013:

- In conjunction with: NIPS 2013

- Colocated with: Steel City Kitties 2013

Neural Information Processing Systems Foundation

Deep Cat Basis

Hierarchical Felines

Convex Relaxations for Cats

Random Furrests

Questions?

